Section 10.1

Arc Length

The equation for the length of a parametric curve is like our previous "length of curve" equation:

$$
L=\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

(Hmm......smells like the Pythagorean Theorem.)

Derivation:

$$
\begin{aligned}
& \int \sqrt{1+\left(\frac{d y t}{d x}\right)^{2}} d x \\
& \int \sqrt{\frac{1+\frac{\left(\frac{d y}{d t}\right)^{2}}{\left(\frac{d x}{d t}\right)^{2}}}{} d x} \begin{array}{l}
\int \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y t}{d t}\right)^{2}} \cdot \frac{d x}{d t} \\
\int \sqrt{\left.\frac{(d t}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \\
\left(\frac{d d}{d t}\right)^{2}
\end{array} d x
\end{aligned}
$$

Find the length of the curve $x=\cos ^{3} t, y=\sin ^{3} t$, on $[0,2 \pi]$.

$$
\begin{aligned}
& \frac{d x}{d t}=-3 \cos ^{2} t \sin t, \frac{d y}{d t}=3 \sin ^{2} t \cos t \\
& L=\int_{0}^{2 \pi} \sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t} d t \\
& 9 \cos ^{2} t \sin ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right) \\
& L=\int_{0}^{2 \pi}|3 \cos t \sin t| \sqrt{\sin ^{2} t+\cos ^{2} t} d t \\
& L=\int_{0}^{2 \pi}|3 \cos t \sin t| d t
\end{aligned}
$$

$$
\begin{aligned}
& L=\int_{0}^{2 \pi}|3 \cos t \sin t| d t \\
& L=4 \int_{0}^{\pi / 2} 3 \cos t \sin t d t \\
& u=\sin t \\
& d u=\cos t d t \\
& L=12 \int_{0}^{1} u d u=\left.6 u^{2}\right|_{0} ^{1}=6
\end{aligned}
$$

This curve is:

$$
\begin{aligned}
& x(t)=\cos (7 \pi t) \\
& y(t)=\sin (5 \pi t)
\end{aligned}
$$

Homework:

p. 518 \# 11-15 odd; AP Packet \#18-22

